1,770 research outputs found

    A Flexible and Modular Framework for Implementing Infrastructures for Global Computing

    Get PDF
    We present a Java software framework for building infrastructures to support the development of applications for systems where mobility and network awareness are key issues. The framework is particularly useful to develop run-time support for languages oriented towards global computing. It enables platform designers to customize communication protocols and network architectures and guarantees transparency of name management and code mobility in distributed environments. The key features are illustrated by means of a couple of simple case studies

    Orchestrating Tuple-based Languages

    Get PDF
    The World Wide Web can be thought of as a global computing architecture supporting the deployment of distributed networked applications. Currently, such applications can be programmed by resorting mainly to two distinct paradigms: one devised for orchestrating distributed services, and the other designed for coordinating distributed (possibly mobile) agents. In this paper, the issue of designing a pro- gramming language aiming at reconciling orchestration and coordination is investigated. Taking as starting point the orchestration calculus Orc and the tuple-based coordination language Klaim, a new formalism is introduced combining concepts and primitives of the original calculi. To demonstrate feasibility and effectiveness of the proposed approach, a prototype implementation of the new formalism is described and it is then used to tackle a case study dealing with a simplified but realistic electronic marketplace, where a number of on-line stores allow client applications to access information about their goods and to place orders

    Towards Active Learning Interfaces for Multi-Inhabitant Activity Recognition

    Get PDF
    Semi-supervised approaches for activity recognition are a promising way to address the labeled data scarcity problem. Those methods only require a small training set in order to be initialized, and the model is continuously updated and improved over time. Among the several solutions existing in the literature, active learning is emerging as an effective technique to significantly boost the recognition rate: when the model is uncertain about the current activity performed by the user, the system asks her to provide the ground truth. This feedback is then used to update the recognition model. While active learning has been mostly proposed in single-inhabitant settings, several questions arise when such a system has to be implemented in a realistic environment with multiple users. Who to ask a feedback when the system is uncertain about a collaborative activity? In this paper, we investigate this and more questions on this topic, proposing a preliminary study of the requirements of an active learning interface for multi-inhabitant settings. In particular, we formalize the problem and we describe the solutions adopted in our system prototype

    Apparative Probleme bei der Untersuchung der Konstanz des Wahrnehmungsraumes - und ein neues Verfahren zu ihrer Lösung

    Get PDF
    An important usage of time sequences is for discovering temporal patterns of events (a special type of data mining). This process usually starts with the specification by the user of an event structure which consists of a number of variables representing events and temporal constraints among these variables. The goal of the data mining is to find temporal patterns, i.e., instantiations of the variables in the structure, which frequently appear in the time sequence. This paper introduces event structures that have temporal constraints with multiple granularities (TCGs). Testing the consistency of such structures is shown to be NP-hard. An approximate algorithm is then presented. The paper also introduces the concept of a timed automation with granularities (TAGs) that can be used to find in a time sequence occurrences of a particular TCG with instantiated variables. The TCGs, the approximate algorithm and the TAGs are shown to be useful for obtaining effective data mining procedures

    CAVIAR: Context-driven Active and Incremental Activity Recognition

    Get PDF
    Activity recognition on mobile device sensor data has been an active research area in mobile and pervasive computing for several years. While the majority of the proposed techniques are based on supervised learning, semi-supervised approaches are being considered to reduce the size of the training set required to initialize the model. These approaches usually apply self-training or active learning to incrementally refine the model, but their effectiveness seems to be limited to a restricted set of physical activities. We claim that the context which surrounds the user (e.g., time, location, proximity to transportation routes) combined with common knowledge about the relationship between context and human activities could be effective in significantly increasing the set of recognized activities including those that are difficult to discriminate only considering inertial sensors, and the highly context-dependent ones. In this paper, we propose CAVIAR, a novel hybrid semi-supervised and knowledge-based system for real-time activity recognition. Our method applies semantic reasoning on context-data to refine the predictions of an incremental classifier. The recognition model is continuously updated using active learning. Results on a real dataset obtained from 26 subjects show the effectiveness of our approach in increasing the recognition rate, extending the number of recognizable activities and, most importantly, reducing the number of queries triggered by active learning. In order to evaluate the impact of context reasoning, we also compare CAVIAR with a purely statistical version, considering features computed on context-data as part of the machine learning process

    Supporting Temporal Reasoning by Mapping Calendar Expressions to Minimal Periodic Sets

    Full text link
    In the recent years several research efforts have focused on the concept of time granularity and its applications. A first stream of research investigated the mathematical models behind the notion of granularity and the algorithms to manage temporal data based on those models. A second stream of research investigated symbolic formalisms providing a set of algebraic operators to define granularities in a compact and compositional way. However, only very limited manipulation algorithms have been proposed to operate directly on the algebraic representation making it unsuitable to use the symbolic formalisms in applications that need manipulation of granularities. This paper aims at filling the gap between the results from these two streams of research, by providing an efficient conversion from the algebraic representation to the equivalent low-level representation based on the mathematical models. In addition, the conversion returns a minimal representation in terms of period length. Our results have a major practical impact: users can more easily define arbitrary granularities in terms of algebraic operators, and then access granularity reasoning and other services operating efficiently on the equivalent, minimal low-level representation. As an example, we illustrate the application to temporal constraint reasoning with multiple granularities. From a technical point of view, we propose an hybrid algorithm that interleaves the conversion of calendar subexpressions into periodical sets with the minimization of the period length. The algorithm returns set-based granularity representations having minimal period length, which is the most relevant parameter for the performance of the considered reasoning services. Extensive experimental work supports the techniques used in the algorithm, and shows the efficiency and effectiveness of the algorithm

    Location-related privacy in geo-social networks

    Get PDF
    Geo-social networks (GeoSNs) provide context-aware services that help associate location with users and content. The proliferation of GeoSNs indicates that they're rapidly attracting users. GeoSNs currently offer different types of services, including photo sharing, friend tracking, and "check-ins. " However, this ability to reveal users' locations causes new privacy threats, which in turn call for new privacy-protection methods. The authors study four privacy aspects central to these social networks - location, absence, co-location, and identity privacy - and describe possible means of protecting privacy in these circumstances

    Evidence of spontaneous spin polarized transport in magnetic nanowires

    Full text link
    The exploitation of the spin in charge-based systems is opening revolutionary opportunities for device architecture. Surprisingly, room temperature electrical transport through magnetic nanowires is still an unresolved issue. Here, we show that ferromagnetic (Co) suspended atom chains spontaneously display an electron transport of half a conductance quantum, as expected for a fully polarized conduction channel. Similar behavior has been observed for Pd (a quasi-magnetic 4d metal) and Pt (a non-magnetic 5d metal). These results suggest that the nanowire low dimensionality reinforces or induces magnetic behavior, lifting off spin degeneracy even at room temperature and zero external magnetic field.Comment: 4 pages, 3 eps fig
    corecore